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Abstract
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identical downstream firms. Each observes its own cost shock, and faces uncertainty
from its competitor’s shock. When they are risk neutral and can absorb losses, the
upstream firm contracts symmetric outputs for production efficiency. However,
when they are risk averse, competition requires the payment of a risk premium due
to revenue uncertainty. Moreover, when they enjoy limited liability, competition
requires the upstream firm to share additional surplus. To resolve these trade-offs,
the upstream firm offers exclusive contracts in many cases.
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1 Introduction

Very often, a manufacturer has to decide whether to sell its products through one or

several retailers, a franchisor whether to have one or multiple franchisees, the owner of

a patent whether to license its technology to one or more licensees. In many cases, a

situation arises in which only one agent will deal with the principal’s product, brand,

or technology.1 This paper provides a novel rationale for the optimality of such exclu-

sive relationships and, more generally, asymmetric market shares at the retail level. We

argue that competition with imperfectly correlated and privately observed cost or de-

mand shocks necessarily creates uncertainty for downstream retailers, and that exclusive

contracts can therefore benefit upstream firms when these retailers are subject to risk

aversion or limited liability.

Our analysis builds on two basic ideas. First, when downstream firms compete, they

impose externalities on one another. If one produces more, the market price goes down,

affecting the profits of others. But if production levels depend on the realization of

individual shocks that are not fully observable to competitors, downstream firms do not

know the size of the externality that competition will impose on them. Second, the size

of the externalities is endogenous to the contracts the upstream firm offers. By increasing

or decreasing the difference in input levels offered to firms, the upstream firm determines

the magnitude of the uncertainty that downstream firms face. In short, much of the

literature focuses on the effect of competition on average downstream profits, or the first

moment of the payoff distribution. We instead study the effect of competition on the

second moment, and the resulting implications for market structure.

When downstream firms are risk neutral and can absorb losses, the upstream firm

has an inherent incentive to offer all of them the input because doing so ensures that

whenever a more productive firm exists it serves some of the market.2 When downstream

firms are risk averse, there is a cost to the upstream firm of contracting more than one:

the uncertainty in their realized profit forces it to pay them a risk premium. When

risk aversion is sufficiently high, exclusive contracts are optimal because, by offering

zero input to all but one downstream firm, the upstream firm eliminates the competition

externality, and with it the uncertainty from competition that downstream firms face.3 A

similar mechanism operates when downstream firms enjoy limited liability. The resulting

1According to Lafontaine and Slade (2008), one third of retail sales through independent outlets occur
in exclusive relationships. Further evidence on this point comes from Blair and Lafontaine (2011), who
analyze a large dataset of franchise contracts, and show that, in 17 out of 18 sectors, more than 50% of
franchisors adopt exclusive territories. In the context of licensing deals, Anand and Khanna (2000) show
that over 30% of the agreements in their dataset are exclusive.

2One can think of other mechanisms, such as product differentiation, that would also generate the
optimality of offering more than one firm the input.

3We also show that, for intermediate risk preferences and two firms, partial exclusion arises, with one
downstream firm producing more for all shock realizations.
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surplus that the upstream firm must leave when contracting with two firms more than

offsets the gain from production efficiency, which induces it to offer an exclusive contract

under certain conditions.

This paper builds on a long literature on bilateral contracting4 in vertical markets

(Hart and Tirole 1990, McAfee and Schwartz 1994, Segal 1999, Rey and Tirole 2007) that

largely focuses on exclusion as a response to commitment problems. When the upstream

firm can commit to public bilateral contracts, it can always extract the monopoly profit;

but when it offers unobservable bilateral contracts, it cannot commit not to renegotiate

with downstream firms and does not obtain the monopoly profit. Exclusive contracts

serve as a commitment device to restore monopoly profit. Our mechanism is wholly

different from this one. In the model the upstream firm has full commitment, but chooses

exclusive outcomes to reduce uncertainty in the downstream market.

The most closely related paper to ours in the literature is Rey and Tirole (1986), who

also study a vertical market with bilateral contracting in which downstream firms are

subject to shocks. In their model, when downstream firms are infinitely risk averse the

upstream firm allows them to compete, while with risk neutrality it offers exclusive ter-

ritories. The key difference with our paper is that in Rey and Tirole (1986) downstream

shocks are perfectly correlated so that market structure does not affect downstream un-

certainty. We instead show that competition creates uncertainty when shocks are i.i.d.

(as in the model of section 3) or more generally imperfectly correlated (see extension in

section 4.1), and as a result arrive at the exact opposite conclusion to that of Rey and

Tirole (1986). In our model, when downstream firms are risk neutral the upstream firm

allows competition, but when they are infinitely risk averse it provides a fully exclusive

contract. We are not aware of another paper in the literature that focuses on exclusion

as a response to the uncertainty that market competition creates.

In an environment similar to ours, Dequiedt and Martimort (2015) study bilateral

contracts in which the upstream firm can adjust the contract offered to any single down-

stream firm based on what it learns about the costs of other firms during the contracting

process. In the optimal contract, all downstream firms pay a cost-dependent fixed fee,

and the entire market is allocated to the lowest-cost firm, which can be interpreted as

an exclusive outcome.5 The fundamental force leading to exclusion is screening. In our

4A bilateral contract between an upstream and downstream firm cannot directly depend on the out-
puts or messages of other firms. Motivations for this restriction include the transaction costs associated
with writing and enforcing multilateral contracts, and the possibility that multilateral contracts might
facilitate collusion. Although vertical contracts are typically regarded as having less anticompetitive po-
tential than horizontal contracts, antitrust authorities are often concerned with contracts that reference
rivals, that is, vertical contracts between a buyer and a seller whose terms may depend on information or
contract terms pertaining to the buyer’s rivals (as in the situation depicted in our paper) or the seller’s
rivals (Scott Morton 2012).

5This outcome is similar to that with multilateral contracting. See McAfee and McMillan (1986),
Laffont and Tirole (1987), McAfee and McMillan (1987), Riordan and Sappington (1987), and Dasgupta
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model, instead, the upstream firm simply posts contracts for each downstream firm and

does not adjust them depending on information it may gather from other downstream

firms. The fundamental force leading to exclusion is the elimination of a surplus that

must be paid to competing downstream firms that are risk averse or protected by limited

liability. In both models, the outputs and transfers paid by a downstream firm depend

on its own costs; the key difference is whether these vary in other firms’ costs as well. In

practice, it appears that many upstream firms do not adjust terms-of-trade for individual

firms as a function of the cost structure of all potential retailers. Lafontaine and Shaw

(1999) show in a large panel dataset of franchisors that 75% offer identical contracts to

all downstream firms in their network during a thirteen-year period. Lafontaine (1992)

surveys franchisors about their contractual process, and 42% report offering contracts on

a take-it-or-leave it basis with no possibility for negotiation, while another 38% allow no

negotiation over monetary terms. Our paper describes well situations in which the up-

stream firm posts contracts for downstream firms that do not depend on communication

with them. Obviously this assumption does not fit every vertical market, but we find it

empirically plausible in many.

Finally, while limited liability is a rather standard assumption in the industrial-

organization theory literature, risk aversion is not. However, the empirical literature

has long recognized its importance. For example, the majority of exclusive retailing oc-

curs in franchise networks (Lafontaine and Slade 2008), within which the owners of retail

outlets are typically small and undiversified; some franchisors even explicitly seek out

retailers whose incomes are highly correlated with their outlets’ performance (Kaufmann

and Lafontaine 1994). Asplund (2002) and Banal-Estañol and Ottaviani (2006) also

present numerous references to empirical studies documenting the relevance of firm risk

aversion.6 More generally, Nocke and Thanassoulis (2014) provide theoretical foundations

for introducing curvature into downstream firms’ payoff functions. They show that when

downstream firms face credit constraints subsequent to competing in the downstream

market, they behave as if they were risk averse even if they are risk neutral.

The paper is organized thus. Section 2 describes the model and presents a solution of

the baseline case without risk aversion or limited liability. Section 3 then considers the

impact of risk aversion and limited liability on exclusive arrangements. Section 4 contains

a few extensions of the model. Finally, section 5 provides a discussion and concludes.

Appendix A contains all proofs.

and Spulber (1989).
6They also make a related point to ours in horizontal markets by observing that mergers have a role

to play in reducing the uncertainty that firms face.
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2 Model

Consider a vertical market in which an upstream firm supplies an input that is trans-

formed into output in a one-to-one relationship by two downstream firms i = 1, 2. Aggre-

gate demand for the product is P (Q) where Q ≥ 0 is aggregate quantity. We assume that

P ′(Q) < 0, and that marginal revenue MR(Q) ≡ P (Q) +QP ′(Q) is decreasing. Finally,

for technical reasons, we also assume that the upstream firm faces a capacity constraint

such that it cannot supply more than Q units of input, where Q is an arbitrarily large

but finite quantity.

Each downstream firm has a constant marginal cost of production ci ∈ {0, c} where c >

0. Each firm observes the realization of its own cost shock, but not that of its competitor.

The upstream firm observes neither shock. Shocks are iid with Pr [ ci = 0 ] = r. Constant

returns to scale keep aggregate production costs independent of the distribution of output

across downstream firms, so that we can isolate the impact of revenue uncertainty. The

interpretation of ci as a cost shock is simply for concreteness, as it can equally represent

a demand shock.7 Finally, we assume that c < P (MR−1(0)).8

The upstream firm offers the nonlinear wholesale price contract Ti(Qi) to downstream

firm i with the interpretation that i commits to pay Ti(Qi) to the upstream firm when

producing Qi units of output. Given these contracts, which are publicly observed, firms

engage in Cournot competition and simultaneously choose outputs. Profits are then

realized and payments are made to the upstream firm. Downstream firms can guarantee

zero profits by exiting the market without producing.

By the revelation principle, we can focus on the upstream firm’s offering downstream

firm i an incentive-compatible two-point contract [Qi(ĉi), Ti(ĉi)] for ĉi ∈ {0, c} in which i

prefers to truthfully report its realized marginal cost. Let

πi(ĉi, ĉj, ci) = Qi(ĉi)P [Qi(ĉi) +Qj(ĉj)]−Qi(ĉi)ci − Ti(ĉi) (1)

be firm i’s profit from reporting cost type ĉi when the competitor reports cost type ĉj

and firm i has marginal cost ci. A key feature of the model is the uncertainty regarding

the competitor’s cost shock which in turn generates revenue uncertainty.

In incentive-compatible contracts, firm i faces the lottery

Li(ĉi | ci) = {[πi(ĉi, 0, ci), πi(ĉi, c, ci)] ; (r, 1− r)} (2)

7Consider a differentiated products model in which firm i’s demand is pi = vi −Qi − γ
∑
j 6=iQj and

its profit is π = (pi − ci)Qi. For γ → 1, whether the shock is on vi or ci is formally equivalent.
8This is a standard condition. It implies that low cost firms face competition from high cost firms in

the sense that the high cost firm can still profitably produce when the low cost firm chooses its monopoly
quantity, which is precisely MR−1(0).
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when reporting cost type ĉi. We assume firms use the constant absolute risk aversion

(CARA) utility function u(πi) = − exp(−aπi) to evaluate the expected utility of the

lottery, which we denote U [Li(ĉi | ci)]. The a parameter is the coefficient of absolute

risk aversion, and higher values indicate more risk aversion. a is common knowledge and

shared by both downstream firms.

The upstream firm’s problem can be written as

max
{Qi(ci),Ti(ci)}i=1,2;ci∈{0,c}

2∑
i=1

rTi(0) + (1− r)Ti(c) such that (3)

U [Li(ci | 0)] ≥ 0 (PC)

U [Li(ci | ci)] ≥ U [Li(cj | ci)] for cj 6= ci (IC)

Q ≥ Qi(ci) ≥ 0. (QQ)

Since firms can earn zero profit from exiting the market, their contracts must provide

them at least 0 to ensure participation. The IC constraints ensure firms report their

realized cost shock truthfully, while the QQ constraints express the required bounds on

output.

Both downstream firms are symmetric, in the sense that they have the same distri-

bution over cost shocks and the same utility function over lotteries. We are interested

in situations in which the upstream firm nevertheless induces asymmetric outcomes in

the downstream market due to revenue uncertainty. There are two relevant definitions of

exclusion.

Definition 1 Let {Q∗i (ci), T ∗i (ci)}i=1,2;ci∈{0,c} be a solution to (3).

1. Contracts are uniform if Q∗1(c1) = Q∗2(c2) whenever c1 = c2.

2. Firm i is partially excluded if 0 < Q∗i (ci) < Q∗j(cj) for j 6= i whenever ci = cj.

3. Firm i is fully excluded if Q∗i (0) = Q∗i (c) = 0.

It is important to emphasize that we define exclusion as an equilibrium outcome of the

Cournot game played between downstream firms rather than as an explicit contractual

clause: the upstream firm simply posts contracts and lets downstream firms choose out-

puts given the terms of the contracts. Moreover, the direct mechanisms we analyze are

not the only contracts that implement exclusive outcomes. For example, in the analysis

we show conditions under which the upstream firm can implement fully exclusive out-

comes while offering both downstream firms the same contract. As we discuss below, the

fact that exclusion is implicit rather than explicit presents challenges for regulators.
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2.1 Simplified program

In lottery (2), the uncertainty comes from the revenue side, whereas the production cost

Qi(ĉi)ci and transfer Ti(ĉi) are deterministic. CARA utility allows one to linearly separate

these and represent expected utility as

U [Li(ĉi | ci)] = CertRevi(ĉi)−Qi(ĉi)ci − Ti(ĉi).

Here CertRevi(ĉi) is certainty-equivalent revenue, or the fixed payment net of production

and transfer costs that gives the firm the same expected payoff as (2).

This representation of expected utility allows one to write program (3) in a simpler

way using standard arguments from the mechanism design literature. The basic idea is to

solve the principal’s program considering only the participation constraints of the high-

cost firms and incentive-compatibility constraints of the low-cost firms (see the proof of

1 in the Appendix for details).

Lemma 1 Program (3) is equivalent to maximizing∑
i

[rCertRevi(0) + (1− r) CertRevi(c)]−
∑
i

cQi(c) (4)

such that Q ≥ Qi(0) ≥ Qi(c) ≥ 0.

The representation of the upstream firm’s expected profits in lemma 1 has an intu-

itive form. The first summation is expected certainty-equivalent revenue. The second

summation represents two kinds of costs. The first is the expected production costs∑
i(1 − r)cQi(c) that are only incurred by high-cost downstream firms. The second is

the information rent that must be left to low-cost downstream firms, which in expected

value terms is
∑

i rcQi(c). Summing both costs gives
∑

i cQi(c). As for the constraints,

Qi(0) ≥ Qi(c) is a necessary condition for incentive compatibility, and means that efficient

firms produce more than inefficient ones in equilibrium.

In deriving optimal contracts, it is useful to define QH
i ≡ Qi(c), ∆i ≡ Qi(0) − QH

i ,

QH ≡ QH
1 +QH

2 , and ∆ ≡ ∆1 + ∆2. QH and ∆ are aggregate production variables, while

QH
i and ∆i are distribution variables. When these variables carry asterisk superscripts,

they should be understood to represent optimal values.

To complete the preliminaries, we provide conditions under which the upstream firm

wishes to contract positive aggregate output from both cost types.

Lemma 2 For all parameter values ∆∗ > 0. There exist values of r∗ and c∗ such that

QH∗ > 0 whenever r < r∗ and c < c∗.

In other words, the upstream firm always contracts positive output from efficient down-

stream firms, but only contracts positive output from inefficient firms if they are suffi-
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ciently likely to be present (r low) and not too inefficient (c low). Otherwise, the upstream

firm wishes to shut out high-cost firms entirely. We assume throughout the paper that

r < r∗ and c < c∗ since the main question of interest is not whether production occurs

at all, but how production is distributed across downstream firms given risk aversion.

Section 4 discusses the situation with multiple cost types.

2.2 Baseline solution

We begin by analyzing a baseline case in which downstream firms are neither risk averse

nor subject to limited liability. Here the only force that affects the upstream firm’s choice

is production efficiency, which our first result shows leads to the optimality of uniform

contracts.

Proposition 1 When firms are risk neutral and do not face limited liability, uniform

contracts are (weakly) optimal. In particular, ∆∗1 = ∆∗2 = ∆∗

2
> 0, while profits are

independent of the distribution of QH∗ across firms.

The basic intuition for the result is that the upstream firm wants efficient downstream

firms to produce equal amounts to avoid a situation in which it must rely mainly on a

high-cost producer to serve the market when a low-cost producer is also available. This

is seen most clearly in the linear demand case where P = 1−Q and expected revenue is

E[Q(1−Q) ] = E[Q ]−E[Q ]2 − V [Q ]. The upstream firm should therefore distribute

output across the two firms to decrease the variance in aggregate output, which one can

easily show is V [Q ] = r(1 − r)
∑

i ∆
2
i . This is clearly minimized by equating ∆i across

firms. Essentially, having two firms in the market helps the upstream firm “hedge its

bets” by making sure that when one of the two firms is the low cost type it gets a piece

of the market.

For the more general argument, we first observe that certainty equivalent revenue is

simply expected revenue so that

CertRevRNi (ĉi) = rQi(ĉi)P [Qi(ĉi) +Qj(0)] + (1− r)Qi(ĉi)P [Qi(ĉi) +Qj(c)]. (5)

Using the notation described at the end of section 2.1, we can write the upstream firm’s

objective function in (4) as

r2
(
QH + ∆

)
P
(
QH + ∆

)
+ (1− r)2QHP

(
QH
)

+

r(1− r)
(
QH + ∆1

)
P
(
QH + ∆1

)
+ r(1− r)

(
QH + ∆−∆1

)
P
(
QH + ∆−∆1

)
−

cQH (6)

The terms on the first two lines of (6) refer to total downstream revenue for different
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realizations of downstream costs. For example, (QH + ∆)P (QH + ∆) is the total revenue

when both firms are low cost, which occurs with probability r2. Upstream profits depend

on the distribution of output only through ∆1, and this in turn is only relevant when one

downstream firm is low cost and the other is high cost (reflected in the second line of

(6)). When firm 1 is low cost and firm 2 is high cost, the marginal impact of raising ∆1 is

MR
(
QH + ∆1

)
, while in the opposite case the marginal impact is −MR

(
QH + ∆−∆1

)
.

For a fixed value of ∆, the optimal ∆1 is therefore defined by

MR
(
QH + ∆∗1

)
= MR

(
QH + ∆−∆∗1

)
. (7)

Proposition 1 pins down the distribution of ∆∗ across downstream firms, but not that

of QH∗. As long as ∆∗1 = ∆∗2 holds, any split of QH∗ is optimal: as can be observed

from (6) upstream profit is the same when ∆∗1 = ∆∗2 = ∆∗

2
and QH∗

1 = QH∗
2 = QH∗

2

as when ∆∗1 = ∆∗2 = ∆∗

2
, QH∗

1 = QH∗

2
+ K, and QH∗

2 = QH∗

2
− K for some constant

0 < K ≤ QH∗

2
. However, there is no fundamental force driving asymmetric outcomes,

and we view uniform contracts as the natural ones.

3 Exclusion and Risk Aversion

We now depart from the baseline case and assume that downstream firms are risk averse.

If serving two firms is useful for the upstream firm because of production efficiency, it also

creates uncertainty for downstream firms. When a downstream firm sells in the market

alone, it knows for certain what its profits will be. On the other hand, when facing a

competitor whose output level varies with its cost shocks, profits are uncertain. In the

case of risk neutrality, this has no effect on downstream firms’ utility. In reality, however,

one might imagine that downstream firms have some aversion to the uncertainty that

competition creates.

3.1 High risk aversion

We begin by analyzing a situation in which downstream risk aversion is high, which

corresponds to a large value of a in the utility function. The next results shows the

dramatic consequences for optimal production.

Proposition 2 There exists a finite a such that fully exclusive contracts are strictly

optimal for all a > a.

In words, with sufficiently high risk aversion, the upstream firm supplies just one of

the two downstream firms (since they are symmetric, the upstream firm can choose to

exclusively deal with either). To proceed with the argument, we first analyze the case of
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infinite risk aversion (obtained as a→∞) and then use continuity arguments to extend

the result to finite values of a.

In contrast to the situation with risk neutrality, with infinite risk aversion the certainty

equivalent revenue becomes

CertRevIRAi (ĉi) = Qi(ĉi)P [Qi(ĉi) +Qj(0)]. (8)

To see why, first note that an infinitely risk averse firm’s expected utility from a lottery

coincides with its lowest possible realization.9 Moreover, as established in lemma 1, a

necessary condition for incentive compatibility is that low-cost firms produce more than

high-cost firms. Since revenue is strictly decreasing in the output of a competitor, the

lowest realization of the lottery that each downstream firms faces is the revenue gained

from meeting an efficient competitor. Comparing (8) with (5) is instructive because it

immediately shows that if the upstream firm offers the optimal symmetric contracts for

risk neutral downstream firms to infinitely risk averse downstream firms, then its profits

in (4) are strictly lower. In this sense, risk aversion in downstream firms increases the

costs of serving both of them. The question is: how does the upstream firm respond to

risk aversion in its optimal contract?

Plugging (8) into (4) gives upstream profit with infinite risk aversion as

r
(
QH + ∆

)
P
(
QH + ∆

)
+

(1− r)
[
QH

1 P
(
QH + ∆−∆1

)
+ (QH −QH

1 )P
(
QH + ∆1

)]
− cQH . (9)

The optimality of fully exclusive contracts is then immediate. Since price is decreasing in

output, the term is square brackets in (9) is less than QH
1 P (QH) + (QH −QH

1 )P (QH) =

QHP (QH). So (9) has an upper bound of

r
(
QH + ∆

)
P
(
QH + ∆

)
+ (1− r)QHP (QH)− cQH ,

which is precisely the expected profit the upstream firm generates by contracting with a

single firm. The upstream firm can only generate profits through the transfer payments

that downstream firms are willing to make, and with infinite risk aversion it cannot

extract any of the benefit of productive efficiency since downstream firms’ risk premium

fully swamps the profits they make when facing an inefficient competitor.

Figure 1 provides further intuition about how high risk aversion changes the optimal

contract. Figure 1a shows the impact on upstream profits of changes in QH
1 and ∆1 with

risk neutrality. As discussed in the baseline solution, QH
1 has no effect while moving ∆1

9By definition, an infinitely risk averse firms’ expected utility over a lottery with outcomes (x1, . . . , xN )
and associated probabilities (p1, . . . , pN ) is min{x1, . . . , xN}.
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∂QH1

= 0, ∂π
∂∆1

< 0

∂π
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= 0, ∂π
∂∆1
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∂QH1

= 0,

∂π
∂∆1

= 0

QH1

∆1

(a) Risk neutrality

∂π
∂QH1

> 0, ∂π
∂∆1

< 0 ∂π
∂QH1

> 0, ∂π
∂∆1

> 0

∂π
∂QH1

< 0, ∂π
∂∆1

< 0 ∂π
∂QH1

< 0, ∂π
∂∆1

> 0

∂π
∂QH1

= 0

∂π
∂∆1

= 0

QH1

∆1

(b) Infinite risk aversion

Figure 1: Derivatives of upstream profits π in distribution variables

This figure illustrates the signs of the derivative of the upstream firm’s objective function
in QH1 and ∆1 for fixed QH > 0 and ∆ > 0 in the cases of risk neutrality and infinite risk
aversion, respectively. In each subfigure, QH1 is plotted on the horizontal axis, whose length
is QH and ∆1 on the vertical, whose length is ∆. The locus of points at which ∂π

∂∆1
= 0 in

the infinite risk aversion case is for illustration only; in general it is not linear.
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closer to the even split ∆1 = ∆
2

always increases them. In contrast, figure 1b shows the

equivalent impact for infinite risk aversion.10 In this case, the distribution of QH across

downstream firms does impact upstream profit. To see why, consider a situation in which

∆1 > ∆2. Per unit of production, firm 2 is then facing more risk from competition in the

sense that the drop in the market price from meeting an efficient competitor is higher

than for firm 1. To mitigate the corresponding drop in profit, the upstream firm can

reduce the production of firm 2 by decreasing QH
2 or, equivalently, by increasing QH

1 .

To see this more formally, the risk premium that must be paid out to low-cost firm 2

is (1− r)
{

(QH
2 + ∆2)[P (QH + ∆2)− P (QH + ∆)]

}
, which decreases on the margin with

QH
2 by (1− r)[P (QH + ∆2)−P (QH + ∆)]. The risk premium paid out to firm 1 increases

in QH
1 on the margin by (1 − r)[P (QH + ∆1) − P (QH + ∆)] which is strictly less than

(1− r)[P (QH + ∆2)−P (QH + ∆)]. Thus the upstream firm gains by increasing QH
1 . An

equivalent argument can be made for high-cost firms. Moreover, once QH
1 is sufficiently

high, increasing ∆1 increases upstream profits by shielding firm 1 from the risk of meeting

an efficient firm 2.

The results so far already contain a basic message of the paper. Even if the upstream

firm can fully commit to bilateral contracts, it may simply be too costly to include both

firms in the downstream market due to the uncertainty that competition creates.

3.2 Intermediate risk aversion

We now explore the model for all values of a. In the risk neutral objective function (6)

and infinite risk aversion objective function (9), upstream profits are linear in various

revenue terms. With CARA utility and a ∈ (0,∞), there is instead curvature in revenue

in the upstream objective function. To avoid the additional complication of curvature in

the demand function, we analyze the linear demand case P (Q) = 1−Q.

The baseline case of section 2.2 showed that the upstream firm chooses symmetric

downstream outputs with risk neutrality to enhance production efficiency, while with high

risk aversion it chooses starkly asymmetric outcomes to minimize risk. In the intermediate

case, the upstream firm responds to both production efficiency and risk premia, but

the implications of this are not immediately obvious. For example, for low levels of

risk aversion, risk premia are also small, so one might plausibly think that symmetric

outcomes remain optimal. Our next result shows that asymmetric outcomes arise for any

level of risk aversion.

Proposition 3 When P = 1−Q and a > 0, exclusion (partial or full) is strictly optimal.

To gain an intuition for the result, recall that with risk neutrality the marginal impact

on upstream profits of varying ∆1 around its optimal value ∆/2 is essentially zero since

10We formally derive the properties of the derivatives plotted in figure 1 in the appendix.
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profits are strictly concave in ∆1. On the other hand, for a > 0, adjusting ∆1 away

from ∆/2 to expose the firm that produces relatively more to less risk (i.e. increasing

∆1 when QH
1 > QH/2, and decreasing it otherwise) has a positive impact on profits

through reducing aggregate risk premia. The optimal ∆1 with intermediate risk aversion

is thus bound away from the symmetric outcome. In terms of the optimal QH
1 , with risk

neutrality it has no impact on profits, but with even a small amount of risk aversion the

upstream firm again uses it to reduce risk premia.11 Formally speaking, we show that the

signs of the partial derivatives of upstream profits in a neighborhood around symmetric

contracts in figure 1b hold for any level of risk aversion.

Rather than being a knife-edge case, the linear demand condition should be under-

stood as implying that partial exclusion arises subject to a bound on the curvature of

the demand function. It is a technical condition in the sense that linearity is useful for

completing the proof of proposition 3; we leave open the question of how substantial

curvature in demand affects the optimal distribution for small values of a.

Combining the results so far together also gives a global prediction on how the degree

of risk aversion affects the extent to which optimal distribution contracts are asymmetric.

We know from proposition 1 that full symmetry is optimal for a = 0. Proposition 3 then

shows that as we increase a, both firms continue to produce, but one firm produces more

than another. Finally, proposition 2 shows that as a passes a critical threshold, one firm

stops producing altogether. So with linear demand, a prediction of the model is that

higher levels of downstream risk aversion should be associated with more asymmetry.

Intuitively, this is because the risk premium begins to dominate the efficiency gains of

output smoothing.

3.3 Limited liability

So far, we have focused on risk aversion as the mechanism that forces the upstream firm to

leave profits to downstream firms with competition, but we now show that similar forces

arise with limited liability. Instead of assuming that downstream firms are risk averse, we

now assume they are risk neutral (a = 0) but enjoy limited liability and cannot be forced

to absorb losses. Absent limited liability, the participation constraints allow firm i profits

to be negative when facing a low-cost competitor and positive when facing a high-cost

competitor so long as the expected utility of both events provides a payoff equivalent to

leaving the market. In practice limited-liability constraints might make this infeasible.

To incorporate these into the model, we follow the approach of Demougin and Garvie

(1991) and introduce non-negativity constraints on profits, which we analyze in section

11Notice that when QHi > QHj , then Qi(c) > Qj(c) by definition. Also, ∆i > ∆j implies Qi(0)−QHi >

Qj(0) − QHj by definition, or Qi(0) − Qj(0) > QHi − QHj . So QHi > QHj and ∆i > ∆j together imply
partial exclusion.
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3.3. More specifically, we replace the PC constraints in (3) with

min{πi(ci, 0, ci), πi(ci, c, ci)} ≥ 0 (LL)

for each ci. One can interpret these as ex post participation constraints that allow down-

stream firms to exit the market and receive a zero payoff after observing the realization of

profits. In contrast, the PC constraints in (3) are interim participation constraints that

allow exit after a negative cost shock, but not after a negative revenue shock induced by

an efficient competitor.

We begin by stating the main result with limited liability.

Proposition 4 Under limited downstream liability, there exists an r′ > 0 such that full

exclusion is optimal for all r < r′.

To see the negative effect of competition, recall that the optimal contract with risk

neutrality and unlimited liability featured (1) ∆∗ > 0, (2) ∆∗1 = ∆∗2, and (3) binding

participation constraints for high-cost firms. The fact that participation constraints bind

and ∆i > 0 means that high-cost firms earn a profit when facing a high-cost competitor

and lose money when facing a low-cost competitor, such that on average profits are zero.

Clearly this contract violates the limited liability constraints (LL).

Instead of satisfying high-cost firms’ participation constraints, under limited liability

the upstream firm instead ensures that they earn zero profit when meeting an efficient

competitor, i.e. πi(c, 0, c) = 0. But this in turn implies that high-cost firms must earn

positive profit when meeting an inefficient competitor. When the probability of efficient

firms r is sufficiently low, paying out this surplus to maintain competition is not optimal,

and the upstream firm again offers exclusive contracts. Within this region, we also show

that the optimal exclusive contract coincides with that offered with high risk aversion.12

4 Extensions

In this section, we explore a few extensions of the baseline model. We consider situa-

tions in which the upstream firm contracts ex ante with downstream firms and costs are

correlated; the upstream firm can choose to eliminate competition with production-only

contracts rather than exclusion; and the upstream firm cannot offer different contracts

to downstream firms. In each extension, we continue to find conditions under which

exclusive contracts are optimal.

12These are the values that solve MR(QH∗ + ∆∗) = 0 and (1− r)MR(QH∗).
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4.1 Ex ante contracting with correlated shocks

Up until now all the uncertainty in the model has arisen from each downstream firm not

knowing its competitor’s type, whereas in reality firms might also not know what the

realization of their own shock is going to be at the time they agree to trade with the

upstream firm. To capture this feature, we introduce the following, alternative timing of

the game.

The upstream firm posts publicly observable contracts as in the baseline model. Each

downstream firm then chooses whether to accept its contract, or reject and get 0. After

this decision, all downstream firms draw ci, which they privately observe. All downstream

firms that accepted their contracts at the second stage choose Qi and commit to pay the

corresponding transfer Ti(Qi). Finally, firms produce output, the market clears, profits

are realized, and downstream firms pay the transfer to the upstream firm.

We also generalize the model by assuming that the correlation between c1 and c2 is

ρ ∈ [0, 1). In its timing and information assumptions, this alternative model is nearly

identical to Rey and Tirole (1986), except that they take ρ = 1. All that our alternative

model requires is that there be some interim uncertainty, which we view as realistic.

ρ < 1 (but potentially very close to 1) essentially requires there to be an arbitrarily

small idiosyncratic component of the ex ante uncertainty that downstream firms face.

For example, firms may face a common demand shock and then a small probability of an

individual shock to the marginal product of a production input.

With incentive compatible menus, firm i faces the ex ante compound lottery13

Li = [Li(0 | 0), Li(c | c); (r, 1− r)] . (10)

M ’s new problem can be expressed as

max
{Qi(ci),Ti(ci)}i=1,2;ci∈{0,c}

2∑
i=1

rTi(0) + (1− r)Ti(c) such that (11)

U [Li] ≥ 0 (PC)

U [Li(ci | ci)] ≥ U [Li(cj | ci)] for cj 6= ci (IC)

Q ≥ Qi(ci) ≥ 0. (QQ)

The participation constraints in this problem do not depend on a firm’s cost type. The

following result shows that the timing and informational assumptions made in the baseline

case are innocuous.

Proposition 5

13Whenever ρ > 0, the probabilities in the interim lotteries are computed using firm i’s posterior
beliefs on the distribution of cj conditional on ci.
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1. With downstream risk neutrality: ∆∗ > 0 and ∆∗1 = ∆∗2 = ∆∗

2
.

2. With downstream infinite risk aversion: whenever r < 1− c
P (0)

the optimal contracts

are such that ∆∗i > 0, QH∗
i > 0, and ∆∗j = QH∗

j = 0 for some i = 1, 2 and j 6= i.

The threshold value of r in part 2 of proposition 5 guarantees that the upstream firm

wishes to contract positive high-cost output in aggregate with infinite risk aversion.

The basic difference between this timing and that of the baseline model is the absence

of information rents, but because these were invariant to the distribution of aggregate

output between firms, their elimination does not materially affect the optimality of ex-

clusion. As for the correlation coefficient, whenever there is a positive probability of two

firms having different cost realizations, the upstream firm gains from dealing with all

efficient cost types, while infinitely risk averse firms compute their expected utility of the

interim lottery under the worst case scenario of meeting the efficient competitor, which

is independent of ρ.

4.2 Revenue-sharing (or production-only) contracts

We have argued that risk aversion and limited liability lead to asymmetric outputs among

identical downstream firms, and in some cases to full exclusion. These outcomes clearly

hurt the upstream firm relative to a situation where firms are risk neutral or not shielded

from liability, and one may wonder why the upstream firm does not seek to reduce or

eliminate the frictions through reducing the exposure to competition.

A seemingly straightforward way for the upstream firm to eliminate the negative

effects of downstream competition is to pay downstream firms to produce output, but

then itself collect the revenue from selling the output (a situation that may also be

interpreted as vertical integration between the manufacturer and the retailers). This

arrangement shields the downstream firms from the negative revenue shock associated

with meeting an efficient competitor, and allows the upstream firm to replicate the payoff

it obtains from contracting with two risk-neutral firms. As we describe below, though,

different contractual arrangements also change the total value of information rents enjoyed

by downstream firms.

The specific setup we analyze in this section is one in which the upstream firm offers an

exclusive contract under limited liability as described in section 3.3, but has the option to

offer revenue-sharing contracts as described above. In this situation, the upstream firm’s
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problem becomes

max
{Qi(ci),Ti(ci)}i=1,2;ci∈{0,c}

r2
[
T1(0) + T2(0) + (QH + ∆)P (QH + ∆)

]
+

r(1− r)
[
T1(0) + T2(c) + (QH + ∆1)P (QH + ∆1)

]
+

r(1− r)
[
T1(c) + T2(0) + (QH + ∆2)P (QH + ∆2)

]
+

(1− r)2
[
T1(c) + T2(c) +QHP (QH)

]
such that (12)

−ciQi(ci)− Ti(ci) ≥ 0 (PC)

−ciQi(ci)− Ti(ci) ≥ −ciQi(cj)− Ti(cj) for cj 6= ci. (IC)

Here the upstream firm’s objective directly includes output since it collects sales revenue

from downstream production. The transfer payments will clearly now be negative: the

upstream firm pays downstream firms for production. Following the same arguments as in

the proof of lemma 1, we can show that without loss of generality the optimal transfers

can be written as Ti(c) = Ti(0) = −cQi(c). When plugged back into the upstream

objective above, we obtain precisely the same objective function as in (6).

Our question of interest is to compare outcomes in the case with limited liability

and exclusive contracts with those under the solution to (12). To make the comparison

tractable, we will assume linear demand P (Q) = 1−Q. As we prove in the appendix, the

optimal exclusive contract offered under limited liability takes the form (for the single

firm that produces)14

QLL(0) =
1

2
, QLL(c) =

1− c
2
− r

1− r
c

2

while the optimal contract under revenue sharing induces each of the two downstream

firms to produce

QRS(0) =
1 + c

4
, QRS(c) =

1− c
4
− r

1− r
c

2
.

An initial observation is that

rQLL(0) + (1− r)QLL(c) = 2[rQRS(0) + (1− r)QRS(c)] =
1− c

2
,

so that the expected output level remains the same in both cases. Instead, as we have

emphasized throughout the paper, the second-moment effects arising from the different

distributions of output across cost types are the important ones. The following result

summarizes the resulting welfare impacts.

Proposition 6 In comparison with the optimal exclusive contract under limited liability,

14According to proposition 4, exclusive contracts are optimal with limited liability for sufficiently low
r. With linear demand, the bound in proposition 4 is r′ = 1−c

1+2c , which can be made arbitrarily close to
1 by taking c small enough.
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the optimal contract under revenue sharing generates:

1. Higher upstream profits.

2. Lower downstream profits.

3. Higher consumer surplus.

Moreover, joint producer surplus is higher if and only if r < 0.5 while overall surplus is

higher if and only if r < 0.75.

Here profits and consumer surplus are computed ex ante, i.e. by taking expectations with

respect to downstream shocks.

The fact that upstream profits are higher with two firms is straightforward given the

discussion of our baseline results. On the other hand, so far we have not discussed the

impact of the upstream firm’s choices on downstream profits.15 Proposition 6 shows that

exclusive contracts increase these. Downstream profits are generated by low cost firms’

enjoying information rents, and these increase in the production level of high-cost firms.

When the upstream firm contracts two firms rather than one, the expected output of

high-cost firms decreases and so too do information rents. This effect of competition

on downstream profits is increasing in r, the probability of drawing a low cost. Finally,

two firms increase consumer surplus by widening the spread between high- and low-cost

firm production—consumer surplus is Q2

2
, a convex function, so this improves welfare.

Intuitively, consumers strongly value large output realizations, which two firms are more

likely to provide than one.

The final part of proposition 6 concerns the combined welfare effects. When high-cost

firms make up the majority of the population (r < 0.5), joint producer surplus (the sum

of upstream and downstream profits) is lower with exclusive contracts, but otherwise the

negative effect on downstream profits dominates and surplus is higher under an exclusive

contract. When one also considers consumer surplus, two firms dominate for a larger

range of parameters (r < 0.75), but the impact on downstream profits can still be large

enough to make exclusive contracts optimal for overall welfare.

In terms of the incentive for the upstream firm to remove the limited-liability con-

straints that compel it to offer exclusive contracts, we can draw two conclusions. First,

if it considers just itself, it will always have an incentive to do so if it can. Second, if

some mechanism exists for it to internalize the effect of removing limited liability on

downstream firms’ profits, it will not do so when low-cost firms are sufficiently common.

Such a mechanism might take the form of simple side payments among producers prior

to the start of production and the shock realizations. These observations in the context

15For a recent paper which looks at how revenue-sharing contracts shift rents in the supply chain, see
Johnson (2017).
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of our simple example clearly do not form a theory that endogenizes the presence of

limited-liability constraints. Rather we make the point that asymmetric outcomes, while

harmful to the upstream firm, are not necessarily incompatible with maximizing total

producer surplus. Moreover, the choice of the upstream firm to offer exclusive contracts

is not necessarily in line with maximizing total welfare.

More broadly speaking, another relevant concern for upstream firms is moral hazard.

There is a large literature, summarized in Blair and Lafontaine (2011), that models

upstream firms as risk-neutral principals and downstream retailers as risk-averse agents

who make investments in quality. As is well known in the literature (Holmström 1979),

insurance comes at the cost of incentives and would be expected to reduce the amount

of investment.

4.3 Standardized contracts

The finding that in some cases the upstream firm chooses exclusive contracts to the

detriment of social welfare suggests a possible role for regulatory intervention. Since

exclusion in our model may arise because of discriminatory offers or through an explicit

exclusive clause, one could imagine a possible policy intervention prohibiting exclusive

clauses and mandating contracts that are standardized across (i.e., do not discriminate

between) downstream firms. More formally, the upstream firm would face the requirement

that T1(Q1) = T2(Q2) whenever Q1 = Q2. One might imagine that introducing this

requirement would force the upstream firm to deal with both retailers, but in this section

we show that such contracts do not in fact rule out its ability to replicate the optimal

exclusive outcome with discrimination as an equilibrium outcome under (possibly very

mild) conditions.

When the upstream firm can offer different contracts to different downstream firms,

we know that under infinite risk aversion (as long as r is sufficiently small) exclusion of

one of them is uniquely optimal. The question is whether the upstream firm is able to

replicate this outcome when it is restricted to offering the same standardized contract to

both firms.16 More precisely, the upstream firm would like to implement the following

equilibrium outcome:

1. It offers both firms the same menu of contracts {(T (0), Q(0)) , (T (c), Q(c)) , (0, 0)},
with Q(0) = QH∗ + ∆∗, Q(c) = QH∗, T (0) = (QH∗ + ∆∗)P (Q∗ + ∆∗)− cQH∗, and

T (c) = QH∗P (QH∗) − cQH∗, where QH∗ and ∆∗ are the optimal values found for

an exclusive contract.

16This is similar to Segal (2003), who examines when the optimal allocation under bilateral contracting
with individualized contracts can be replicated with standardized contracts.
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2. One firm (say 1) chooses (T (0), Q(0)) if low cost and (T (c), Q(c)) if high cost; and

the other firm (say 2) chooses (0, 0) for both cost types.

For this to be an equilibrium outcome, each player must find the candidate strategy

to be optimal given the choices of the others. For the upstream firm, optimality follows

immediately from the fact that this contract reproduces the optimal outcome obtained

under less restrictive assumptions on its strategies (it cannot achieve higher profits when

it is obliged to use standardized contracts than when it can discriminate).

In the case of firm 1, the choice is also optimal given that firm 2 chooses not to

participate in the market: since (0, 0) effectively amounts to exclusion, we know that the

participation and incentive constraints for firm 1 are satisfied when firm 2 does not sell.

Therefore, we only need to confirm whether firm 2 prefers not to participate (i.e.,

chooses (0, 0)) given that firm 1 chooses (T (0), Q(0)) if low cost and (T (c), Q(c)) if high

cost. Under infinite risk aversion, this is true when the following incentive constraints

are satisfied:

0 ≥ QH∗P
(
2QH∗ + ∆∗

)
− cQH∗ − T (c) (ICHH)

0 ≥
(
QH∗ + ∆∗

)
P
(
2QH∗ + 2∆∗

)
− c

(
QH∗ + ∆∗

)
− T (0) (ICHL)

0 ≥ QH∗P
(
2QH∗ + ∆∗

)
− T (c) (ICLH)

0 ≥
(
QH∗ + ∆∗

)
P
(
2QH∗ + 2∆∗

)
− T (0), (ICLL)

where ICHH and ICHL refer to the possible deviations of high-cost firm 2 (it might want

to pick (T (c), Q(c)) or (T (0), Q(0)), respectively); and similarly ICLH and ICLL refer to

the possible deviations of low-cost firm 2. After substitution, the four ICs become:

0 ≥ QH∗ [P (2QH∗ + ∆∗
)
− P (QH∗)

]
(ICHH)

0 ≥ (QH∗ + ∆∗)
[
P
(
2QH∗ + 2∆∗

)
− P

(
QH∗ + ∆∗

)]
− c∆∗ (ICHL)

0 ≥ QH∗ [P (2QH∗ + ∆∗
)
− P (QH∗)

]
+ cQH∗ (ICLH)

0 ≥
(
QH∗ + ∆∗

) [
P
(
2QH∗ + 2∆∗

)
− P

(
QH∗ + ∆∗

)]
+ cQH∗. (ICLL)

Because the demand function is assumed to be decreasing, the first two constraints

are always satisfied, so we are left with the last two ICs. We find that

Proposition 7 There exists a c > 0 such that for c ≤ c, the upstream firm is able to

implement the (optimal) exclusionary outcome by making use of standardized contracts.

Of course, implementing the exclusive contract in this way requires downstream firms,

which are ex ante symmetric, to coordinate on an asymmetric equilibrium in which one

produces and one does not. In this sense, explicit contractual discrimination is arguably
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a more straightforward means through which the upstream firm can generate exclusion

in equilibrium.

Another case of interest is when the upstream firm would like to implement the optimal

exclusive contract when downstream firms are risk neutral but face limited liability. In

this situation, the incentive constraints for the non-producing firm 2 are stricter than

with infinite risk aversion because we need to check that there is no deviation that yields

strictly positive profit for any possible realization of firm 1’s cost type. This is because

under limited liability firm 2 can ‘walk away’ from losses it may suffer when deviating and

producing. Still, one can show that for sufficiently low c, the same result as in proposition

7 holds and the upstream firm does not suffer from being restricted to standardized

contracts.

One of the implications of this analysis is that it would be meaningless to discuss

the desirability of policies such as prohibiting the manufacturer to make use of exclusive

clauses or discriminatory terms in its contract offers: by resorting to a sufficiently rich

menu of options, the manufacturing can, in many cases, achieve the same outcomes

as in explicitly exclusive or discriminatory offers. For example, under linear demand

P (Q) = 1−Q, one can show that the optimal exclusive contract is implementable with

infinite risk aversion under standardized contracts whenever c < c = 1
2
.

4.4 Relaxing other assumptions

In this section we briefly and informally discuss the role of other assumptions we make

in the model.

Number of downstream firms and number of cost types. Our baseline model

has two firms each with two cost types. One can show (Hansen and Motta 2012) that

in a model with N firms each with M possible (symmetrically distributed) cost types,

the optimal contract is fully exclusive under infinite risk aversion (and, by continuity, for

high enough a) as long as the upstream firm wishes to contract positive output from the

second-most efficient cost type. A separate issue is the effect an increased number of firms

has on the trade-off between efficient production and risk for a fixed, finite level of risk

aversion. One intuition is that exclusion becomes less likely as the number of downstream

firms increases. Our results on exclusion rely on the upstream firm wishing to contract

a positive output level from inefficient firms, but with more and more downstream firms

the need to offer inefficient firms a share of the market decreases.

Price competition. We have assumed that downstream firms compete in quantities

and sell homogeneous goods. With price competition, if firms sell homogeneous goods

then the Nash equilibrium of the pricing game with private information on costs involves
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mixed strategies that make characterizing the optimal contract intractable. If we instead

assume that retailers compete in prices but are sufficiently differentiated for all cost types

to produce positive output in equilibrium, then one can easily show the same mechanism

from our baseline case applies: competition exposes retailers to variability in their profits

due to the variation in their competitor’s costs. This increases the incentives for the

upstream firm to offer exclusive contracts.

Asymmetric Downstream Firms. Throughout the paper, we have assumed that

downstream firms are fully symmetric in order to emphasize that risk aversion and lim-

ited liability alone can generate asymmetric outcomes. If downstream firms were funda-

mentally asymmetric, then a reasonable conjecture would be that exclusive contracting

would become even more attractive for the upstream firm. For example, suppose one

downstream retailer had lower expected costs than another. Even under risk neutrality,

the upstream firm would like to contract more output from this firm than its competitor.

The introduction of risk aversion would then reënforce the degree to which the upstream

firm relied on the more efficient retailer to serve the market. Alternatively, if the down-

stream firms differed in their levels of risk aversion, one would imagine that the upstream

firm would sell more via the less risk-averse firm.

5 Conclusion

This paper identifies a new rationale for using exclusivity provisions: when firms compete

downstream, and do not perfectly observe one another’s productivity shocks, competition

generates uncertainty, leading risk-averse (limited-liable) agents to require a risk premium

(additional surplus). To save on these costs, the upstream firm sometimes prefers to deal

exclusively with one firm, and more generally offers asymmetric contracts in many cases.

As mentioned in the introduction, an alternative story for observing exclusion is that

upstream firms suffer from commitment problems. In franchise networks, the main com-

mitment problem is encroachment whereby franchisors allow new franchisees to open

outlets in areas previously successfully developed by established franchisees. Exclusive

territories are often cited as a means of reassuring franchisees that such encroachment

will not take place. Blair and Lafontaine (2011) argue that encroachment should be more

problematic the larger the network, and then contrast this with the empirical evidence.

One study found that only 26 of the largest 50 restaurant franchisors in the US offered

an exclusive territory, compared with an overall incidence for restaurant franchisors of

around 75%. On the other hand, Azoulay and Shane (2001) collected a dataset of newly

founded franchises across a variety of industries, and report that 84% offered exclusive

territories, whereas the cross-industry incidence in the US is around 73%. Hence in the
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networks where encroachment should be seemingly less of a problem, exclusion is more

likely to be observed. An explanation of this observation is that franchisees in new net-

works face greater uncertainty than in existing networks, and that exclusion protects

them in part against the concomitant risk.

In section 4, we provide several robustness checks on the basic results of this paper.

The most notable one is the introduction of ex ante participation constraints in place of

interim ones, as well as correlation between shock realizations. This brings the model very

close to that of Rey and Tirole (1986), who adopt a setup with perfect correlation (also

compatible with downstream firms’ facing a common shock in addition to an idiosyncratic

one). We show that any imperfect correlation leads to the optimality of full exclusion

with infinite risk aversion, in direct contrast to Rey and Tirole (1986). This underscores

the point that even small amounts of uncertainty can have dramatic impacts on the

distribution of output across firms.

One important issue is why the upstream firm does not offer more insurance to down-

stream firms, as this would clearly improve its payoff. For example, one possibility would

be to pay downstream firms a fixed amount to produce, but then collect the revenue

itself. However, we have shown that under certain conditions producer surplus (the

sum of upstream and downstream profits) is higher with exclusive contracts than with

revenue-sharing contracts. Hence if there is a mechanism through which the upstream

firm internalizes the effect of providing insurance to downstream firms, such as ex-ante

bargaining, it will not necessarily choose to do so.

Unlike in the literature on commitment, in our setup the upstream firm need not use

explicit exclusive clauses to induce exclusive outcomes. This makes regulating exclusion

in such markets challenging. In some situations, the upstream firm can even implement

exclusive outcomes through uniform contracts offered to potential entrants who then

self select into producing or not. We thus view the main contribution of the paper

as providing a positive account of the choice of upstream firms to induce asymmetric

downstream outcomes.

More broadly, our basic logic offers a general reason why a principal may endogenously

restrict the number of agents with whom it wants to deal. Whenever the payoff of one

agent depends on the actions or the types of other agents, and there is imperfect infor-

mation, the introduction of competition will oblige the principal to pay a risk premium

whenever agents are risk averse. To save on these, the principal may prefer to contract

with a strict subset of the potential agents. This same mechanism should hold in very

different settings, such as in a moral hazard model where agents are paid according to

relative performance schemes.

22



References

Anand, B. N. and Khanna, T. (2000). The Structure of Licensing Contracts. Journal of
Industrial Economics, 48(1):103–35.

Asplund, M. (2002). Risk-averse firms in oligopoly. International Journal of Industrial
Organization, 20(7):995–1012.

Azoulay, P. and Shane, S. (2001). Entrepreneurs, Contracts, and the Failure of Young
Firms. Management Science, 47(3):337–358.

Banal-Estañol, A. and Ottaviani, M. (2006). Mergers with Product Market Risk. Journal
of Economics & Management Strategy, 15(3):577–608.

Blair, R. D. and Lafontaine, F. (2011). Economics of Franchising. Cambridge University
Press, first paperback edition.

Dasgupta, S. and Spulber, D. F. (1989). Managing procurement auctions. Information
Economics and Policy, 4(1):5–29.

Demougin, D. M. and Garvie, D. A. (1991). Contractual Design with Correlated Infor-
mation under Limited Liability. RAND Journal of Economics, 22(4):477–489.

Dequiedt, V. and Martimort, D. (2015). Vertical Contracting with Informational Oppor-
tunism. American Economic Review, 105(7):2141–82.

Hansen, S. and Motta, M. (2012). Vertical Exclusion with Endogenous Competiton
Externalities. CEPR Discussion Papers 8982, C.E.P.R. Discussion Papers.

Hart, O. and Tirole, J. (1990). Vertical Integration and Market Foreclosure. Brookings
Papers on Economic Activity (Microeconomics), 1990:205–286.

Holmström, B. (1979). Moral Hazard and Observability. Bell Journal of Economics,
10(1):74–91.

Johnson, J. P. (2017). The Agency Model and MFN Clauses. Review of Economic Studies,
84(3):1151–1185.

Kaufmann, P. J. and Lafontaine, F. (1994). The Costs of Control. Journal of Law and
Economics, 37(2):417–53.

Laffont, J.-J. and Tirole, J. (1987). Auctioning Incentive Contracts. Journal of Political
Economy, 95(5):921–37.

Lafontaine, F. (1992). How and Why do Franchisors do What They do: A Survey Report.
In Kaufmann, P. J., editor, Sixth Annual Proceedings of the Society of Franchising.

Lafontaine, F. and Shaw, K. L. (1999). The Dynamics of Franchise Contracting: Evidence
from Panel Data. Journal of Political Economy, 107(5):1041–1080.

Lafontaine, F. and Slade, M. (2008). Empirical Assessment of Exclusive Contracts. In
Buccirossi, P., editor, Handbook of Antitrust Economics. MIT Press, Cambdrige.

23



McAfee, R. P. and McMillan, J. (1986). Bidding for Contracts: A Principal-Agent Anal-
ysis. RAND Journal of Economics, 17(3):326–338.

McAfee, R. P. and McMillan, J. (1987). Competition for Agency Contracts. RAND
Journal of Economics, 18(2):296–307.

McAfee, R. P. and Schwartz, M. (1994). Opportunism in Multilateral Vertical Contract-
ing: Nondiscrimination, Exclusivity, and Uniformity. American Economic Review,
84(1):210–30.

Nocke, V. and Thanassoulis, J. (2014). Vertical Relations Under Credit Constraints.
Journal of the European Economic Association, 12(2):337–367.

Rey, P. and Tirole, J. (1986). The Logic of Vertical Restraints. The American Economic
Review, 76(5):921–939.

Rey, P. and Tirole, J. (2007). A Primer on Foreclosure. In Armstrong, M. and Porter,
R., editors, Handbook of Industrial Organization, pages 2145–2220. North-Holland.

Riordan, M. H. and Sappington, D. E. M. (1987). Awarding Monopoly Franchises. Amer-
ican Economic Review, 77(3):375–87.

Scott Morton, F. (2012). Contracts that Reference Rivals. Speech de-
livered at Georgetown University Law Center, April 5, 2012. Available at
http://www.justice.gov/atr/file/518971/download.

Segal, I. (1999). Contracting With Externalities. The Quarterly Journal of Economics,
114(2):337–388.

Segal, I. (2003). Coordination and discrimination in contracting with externalities: divide
and conquer? Journal of Economic Theory, 113(2):147–181.

Sundaram, R. K. (1996). A First Course in Optimization Theory. Cambridge University
Press.

24



A Proofs

In all proofs in which we derive optimal downstream outputs, we ignore the constraint that

output is less than Q. In all cases, optimal output is finite, so by taking Q large enough, we

can safely ignore it. Its sole role is to guarantee the compactness of the domain over which the

upstream firm maximizes in the proof of proposition 2.

A.1 Proof of Lemma 1 / Upstream Objective Function

Proof. Suppose an agent faces the lottery [(w,w − L), (1 − r, r)] and has CARA utility. The

certainty equivalent C is defined by

exp (−aC) = (1− r) exp (−aw) + r exp (−a(w − L))

which after algebraic manipulations gives C = w−Γ(L, a, r) where Γ(L, a, r) ≡ ln[(1−r)+r exp(aL)]
a .

Applying this expression to the lotteries faced by downstream firms in the model gives

CertRevi(ĉi) =

Qi(ĉi)P [Qi(ĉi) +Qj(c)]− Γ (Qi(ĉi) {P [Qi(ĉi) +Qj(c)]− P [Qi(ĉi) +Qj(0)]} , a, r) . (A.1)

Incentive compatibility for the low-cost firm and participation of the high-cost firm imply

participation of the low-cost firm since

CertRevi(0)− Ti(0) ≥ CertRevi(c)− Ti(c) > CertRevi(c)−Qi(c)c− Ti(c) ≥ 0.

So we can drop the low-cost participation constraint from the program (3). Consider now the

relaxed problem in which we only consider the participation constraint of the high-cost firm

and the incentive-compatibility constraint of the low-cost firm (i.e. we drop the IC constraint

of the high-cost firm). This relaxed program is

max
{Qi(ci),Ti(ci)}i=1,2;ci∈{0,c}

2∑
i=1

rTi(0) + (1− r)Ti(c) such that (A.2)

CertRevi(c)−Qi(c)c− Ti(c) ≥ 0

CertRevi(0)− Ti(0) ≥ CertRevi(c)− Ti(c)

Q ≥ Qi(ci) ≥ 0.

First notice that at no solution could there be a slack participation constraint for the high-cost

firms since otherwise the upstream firm could increase Ti(c), raise profit, and continue to satisfy

the low-cost IC constraint. Second, at no solution could there be a slack IC constraint since

otherwise the upstream firm could increase Ti(0) and raise profit without affecting high-cost
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participation. Third, the ignored IC constraint for the high-cost firms can be written as

c[Qi(0)−Qi(c)] ≥ [Ti(c)− Ti(0)] + [CertRevi(0)− CertRevi(c)].

In the solution to the relaxed program, the right-hand side of this expression is zero since the

IC constraint for the low-cost firm is binding. So, the solution to the relaxed program is also

the solution to the original program provided that Qi(0) ≥ Qi(c).
The maximization problem described in the lemma is obtained by substituting in for Ti(0)

and Ti(c) and imposing the condition Qi(0) ≥ Qi(c).

We now derive the analytical expression for the upstream firm’s objective function we use

in the remaining formal results. Let QHi ≡ Qi(c), ∆i ≡ Qi(0) − QHi , QH ≡ QH1 + QH2 , and

∆ ≡ ∆1 + ∆2. We can then express the choice variables in the maximization problem in terms

of the vector S = (QH1 , Q
H ,∆1,∆), which must satisfy the constraints QH ≥ QH1 ≥ 0 and

∆ ≥ ∆1 ≥ 0. Plugging into (A.1), we obtain

CertRevi(c) = QHi P (QH)− Γ
{
QHi

[
P (QH)− P (QH + ∆j)

]
, a, r

}
and

CertRevi(0) = (QHi + ∆i)P (QH + ∆i)− Γ
{

(QHi + ∆i)
[
P (QH + ∆i)− P (QH + ∆)

]
, a, r

}
After applying the substitutions QH2 = QH − QH1 and ∆2 = ∆ − ∆1, the upstream firm’s

objective function becomes17

π(S, a, r, c) =

(1− r)QHP
(
QH
)

+ r
[(
QH1 + ∆1

)
P
(
QH + ∆1

)
+
(
QH2 + ∆−∆1

)
P
(
QH + ∆−∆1

)]
−

(1− r)Γ
{
QH1

[
P
(
QH
)
− P

(
QH + ∆2

)]}
− (1− r)Γ

{(
QH −QH1

) [
P
(
QH
)
− P

(
QH + ∆1

)]}
−

rΓ
{(
QH1 + ∆1

) [
P
(
QH + ∆1

)
− P

(
QH + ∆

)]}
−

rΓ
{(
QH −QH1 + ∆−∆1

) [
P
(
QH + ∆−∆1

)
− P

(
QH + ∆

)]}
− cQH . (A.3)

By l’Hôpital’s Rule we obtain the relationships

lim
a→0

Γ(L, a, r) = lim
a→0

rL exp(aL)

r exp(aL) + 1− r
= rL

lim
a→∞

Γ(L, a, r) = lim
a→∞

rL exp(aL)

r exp(aL) + 1− r
= lim

a→∞

L

1 + 1−r
r exp(−aL)

= L.

In other words, the limit of certainty equivalent revenue as a→ 0 corresponds to risk neutrality,

as certainty equivalent income is expected income. The limit as a→∞ corresponds to infinite

risk aversion, as the payoff from a lottery is its worst realization. We extend the definition of

π(S, a, r, c) to a = 0 with expression (6) in the main text, and to a = ∞ with (9). Given the

limit results, π(S, a, r, c) defined in this way in continuous in a ∈ R+ ∪∞.

17Here for notational compactness we have dropped the a and r parameters from the Γ functions.
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A.2 Proof of Lemma 2

Proof. The proof for why ∆∗ > 0 proceeds exactly as in the proof of proposition 1. In

particular, note that when ∆ = 0 upstream profits from (A.3) become QH
[
P
(
QH
)
− c
]
, which

can be obtained with an exclusive contract. But the optimal exclusive contract must have

∆ > 0.

Now consider some S′ = (0, 0,∆1,∆) for any 0 ≤ ∆1 ≤ ∆. From (A.3) it is easy to check

that lim
r→0,c→0

π(S′, a, r, c) = 0. On the other hand, let QH′ ≡ arg max
QH

QH
[
P
(
QH
)
− c
]
. Let

S′′ = (QH′, QH′, 0, 0). Clearly lim
r→0,c→0

π(S′′, a, r, c) is positive, which implies there exists some

r∗ and c∗ such that S′′ produces higher profit that S′, meaning that S′ cannot be optimal.

A.3 Proof of Proposition 1

Proof. It remains to be shown that the optimal value of ∆ is positive. The only other possibility

is that ∆ = 0 since ∆ < 0 would violate incentive compatibility. Suppose that ∆ = 0, and

let the optimal value of QH under this restriction be QH′. The total profit of the upstream

firm from this solution is QH′
[
P
(
QH′

)
− c
]
. Note that this payoff can be obtained with the

exclusive contract QH1 = QH′ and QH2 = 0. (By assumption ∆1 = ∆2 = 0).

Now consider the upstream firm’s choice of the optimal exclusive contract, i.e. a contract

in which, without loss of generality, QH1 = QH and ∆1 = ∆. The relevant program is

max
QH≥0,∆≥0

r
(
QH + ∆

)
P
(
QH + ∆

)
+ (1− r)QHP

(
QH
)
− cQH . (A.4)

The optimal values (QH∗,∆∗) for this problem solve the first order conditions

MR
(
QH∗ + ∆∗

)
≤ 0 (A.5)

rMR
(
QH∗ + ∆∗

)
+ (1− r)MR

(
QH∗

)
− c ≤ 0 (A.6)

where (A.5) holds with equality if ∆∗ > 0 and (A.6) holds with equality if QH∗ > 0. These

conditions together imply that ∆∗ > 0. Suppose not, and that QH∗ = 0. Then, from (A.5),

it must be the case that MR(0) ≤ 0 which is ruled out by assumption. Suppose not, and

that QH∗ > 0. Then (A.6) gives MR
(
QH∗

)
= c > 0 while (A.5) gives MR

(
QH∗

)
< 0, a

contradiction. Since the contracts QH = QH′ and ∆1 = ∆ = 0 are within the set of feasible

contracts for (A.4) and are not chosen, their optimality is contradicted.

A.4 Proof of Proposition 2

Proof. The proof relies on continuity in the upstream firm’s objective function and its deriva-

tives. We first establish some relevant notation and properties of the solutions.

Let S∗(a, r, c) ⊂ R4
+ denote the set of solutions to program (3) given a. By arguments in

the main text, S∗(∞, r, c) = {(QH∗, 0,∆∗, 0), (0, QH∗, 0,∆∗)} whenever QH∗ > 0, i.e. all output

is offered to one firm when a = ∞. After we replace QH1 = QH and ∆1 = ∆ (or, equivalently,
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QH2 = QH and ∆2 = ∆) into the manufacturer’s profits in (9), we obtain exactly expression

(A.4) from the proof of proposition 1. Since the program is equivalent, the optimal values for

∆ and QH are described by (A.5) and (A.6), respectively. Combining these implies QH∗ > 0 if

and only if r < 1− c
MR(0) . Moreover, ∆∗ > 0 as argued in the proof of proposition 1.

Second, from expression (9)

∂π(S,∞, r, c)
∂QH1

= (1− r)[P (QH + ∆−∆1)− P (QH + ∆1)] R 0⇔ ∆1 R
∆

2
.

Moreover,

∂π(S,∞, r, c)
∂∆1

∝ QHP ′(QH + ∆1)−QH1 [P ′(QH + ∆−∆1) + P ′(QH + ∆1)].

This is strictly increasing in QH1 since P ′ < 0. Moreover, this expression is negative when

QH1 = 0 and positive when QH1 = QH . So, we conclude there exists some Θ(∆1) ∈ (0, QH) such

that ∂π(S,∞,r,c)
∂∆1

R 0 ⇔ QH1 R Θ(∆1). The signs of these derivatives are plotted in figure 1b in

the main text.

Since π(S, a, r, c) is continuous and the constrained set of parameters is compact, S∗(a, r, c)

is upper-semicontinuous by the Maximum Theorem (see Sundaram (1996) theorem 9.14 for

details). Let V be an open set such that S∗(∞, r, c) ⊂ V and for which, for all S ∈ V ∩D either
∂π(S,∞,r,c)

∂QH
1

, ∂π(S,∞,r,c)
∂∆1

> 0 or ∂π(S,∞,r,c)
∂QH

1
, ∂π(S,∞,r,c)

∂∆1
< 0. By upper-semicontinuity there exists

some a1 such that S∗(a, r, c) ⊂ V for all a > a1. Moreover, since π(S, a, r, c) has continuous

derivatives, for any S ∈ V ∩D there exists some a2(S) such that ∂π(S,a,r,c)

∂QH
1

, ∂π(S,a,r,c)
∂∆1

> 0 and

∂π(S,a,r,c)

∂QH
1

, ∂π(S,a,r,c)
∂∆1

< 0 for all a > a2(S). Hence S cannot maximize profit unless it is fully

exclusive. The proof is completed by taking a ≡ max{a1,maxS a
2(S)}.

A.5 Proof of Proposition 3

Proof. The strategy of the proof is as follows. We fix some QH > 0 and ∆ > 0, and

then consider the problem of maximizing π(QH1 , Q
H ,∆1,∆, a, r, c) with respect to QH1 and ∆1

treating QH and ∆ as fixed, positive parameters. Denote the derived function as π(QH1 ,∆1).

Without loss of generality, we consider contracts in which QH1 ≥ QH/2. We show that ∆1 > ∆/2

and QH1 > QH/2 is optimal within this class. For notational compactness, we express ∆−∆1

as ∆2 and QH − QH1 = QH2 in some expressions below in line with the definitions in the main

text.

Several properties of the Γ function defined in the proof of lemma 1 are useful in the proof:

1.
∂Γ(L, a, r)

∂L
=

r exp(aL)

1− r + r exp(aL)
> 0.

2. From the above expression, we clearly have ∂Γ(L,a,r)
∂L ∈ (r, 1).
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3.
∂2Γ(L, a, r)

∂L2
=

(1− r)ar exp(aL)

[1− r + r exp(aL)]2
> 0.

The first step in the proof is to compute and sign the partial derivatives of π(QH1 ,∆1). From

(A.3), we can compute

∂π

∂QH1
= r

[
P
(
QH + ∆1

)
− P

(
QH + ∆2

)]
−

r
[
P
(
QH + ∆1

)
− P

(
QH + ∆

)]
Γ′
{(
QH1 + ∆1

) [
P
(
QH + ∆1

)
− P

(
QH + ∆

)]}
+

r
[
P
(
QH + ∆2

)
− P

(
QH + ∆

)]
Γ′
{(
QH −QH1 + ∆2

) [
P
(
QH + ∆2

)
− P

(
QH + ∆

)]}
−

(1− r)
[
P
(
QH
)
− P

(
QH + ∆2

)]
Γ′
{
QH1

[
P
(
QH
)
− P

(
QH + ∆2

)]}
+

(1− r)
[
P
(
QH
)
− P

(
QH + ∆1

)]
Γ′
{(
QH −QH1

) [
P
(
QH
)
− P

(
QH + ∆1

)]}
In this expression and those that follow in the proof, Γ′{X} should be understood as ∂Γ(L,a,r)

∂L

evaluated at L = X. Notice that since Γ′{X} is increasing in X, the above expression is

monotonically decreasing in QH1 . So for each ∆1 there is a unique optimal value for QH1 .

Evaluating this expression with linear demand and simplifying gives

∆1

{
rΓ′[(QH −QH1 + ∆2)∆1] + (1− r)Γ′[(QH −QH1 )∆1]− r

}
−

∆2

{
rΓ′[(QH1 + ∆1)∆2] + (1− r)Γ′[QH1 ∆2]− r

}
. (A.7)

First note that when ∆1 = ∆2 this derivative is zero at QH1 = QH/2.

We now show that whenever ∆1 > ∆2, (A.7) is positive when evaluated at QH1 = QH/2.

This implies that the optimal value of QH1 when ∆1 > ∆/2 is greater than QH/2. The proof

proceeds by the construction of lower bounds. First, by the assumption that ∆1 > ∆2 and

monotonicity of Γ′, we know that (A.7) is larger than

∆1

{
rΓ′
[(

QH

2
+ ∆1

)
∆2

]
+ (1− r)Γ′

[
QH

2
∆2

]
− r
}
−

∆2

{
rΓ′
[(

QH

2
+ ∆1

)
∆2

]
+ (1− r)Γ′

[
QH

2
∆2

]
− r
}

which itself is larger than (again by monotonicity of Γ′)

∆1

{
rΓ′
[
QH

2
∆2

]
+ (1− r)Γ′

[
QH

2
∆2

]
− r
}
−∆2

{
rΓ′
[
QH

2
∆2

]
+ (1− r)Γ′

[
QH

2
∆2

]
− r
}
>

∆1

{
Γ′
[
QH

2
∆2

]
− r
}
−∆2

{
Γ′
[
QH

2
∆2

]
− r
}
.

Finally, we know that the final expression above is positive since ∆1 > ∆2 and Γ′ ∈ (r, 1). This

implies that whenever ∆1 > ∆2, QH∗1 > QH/2.
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With linear demand, the part of the objective function (A.3) that depends on ∆1 becomes

r[(QH1 + ∆1)(1−QH −∆1) + (QH2 + ∆−∆1)(1−QH −∆ + ∆1)]−

rΓ[(QH1 + ∆1)(∆−∆1)]− rΓ[(QH2 + ∆−∆1)∆1]− (1− r)Γ[QH1 (∆−∆1)]− (1− r)Γ[QH2 ∆1].

The derivative with respect to ∆1 is

r(1−QH −QH1 − 2∆1)− r(1−QH −QH2 − 2(∆−∆1))−

r(∆− 2∆1 −QH1 )Γ′[(QH1 + ∆1)(∆−∆1)]− r(∆− 2∆1 +QH2 )Γ′[(QH2 + ∆−∆1)∆1]−

(1− r)(−QH1 )Γ′[QH1 (∆−∆1)]− (1− r)QH2 Γ′[QH2 ∆1].

which can be re-written as

r(∆− 2∆1)
{

2− Γ′[(QH1 + ∆1)(∆−∆1)]− Γ′[(QH2 + ∆−∆1)∆1]
}

+

QH1
{
rΓ′[(QH1 + ∆1)(∆−∆1)] + (1− r)Γ′[QH1 (∆−∆1)]− r

}
−

QH2
{
rΓ′[(QH2 + ∆−∆1)∆1] + (1− r)Γ′[QH2 ∆1]− r

}
. (A.8)

When QH1 = QH2 = QH/2, (A.8) is zero when ∆1 = ∆2 = ∆/2. Now instead suppose that

QH1 > QH2 . One can easily show the derivative evaluated at ∆1 = ∆/2 is positive: the first line

of (A.8) is zero, and the last two lines can be bounded below by a positive number in a manner

similar to the argument above for the derivative in QH1 .

Moreover, one can also argue that the derivative is positive at ∆1 < ∆/2 when QH1 > QH2 .

First, the first line of (A.8) is positive since Γ′ < 1. Second, note that (QH1 + ∆1)(∆ −∆1) >

(QH2 +∆−∆1)∆1 whenever ∆1 <
QH

1

QH ∆, which is greater than ∆/2 by the assumption QH1 > QH2 .

Also QH1 (∆ − ∆1) > QH2 ∆1 by assumption. So by monotonicity of Γ′, we obtain a positive

derivative at ∆1 < ∆/2.

Thus the maximizers of π(QH1 ,∆1) either satisfy QH∗1 = QH/2, ∆∗1 = ∆/2 or QH∗1 > QH/2,

∆∗1 > ∆/2. By the arguments above there exists a set X = {(QH1 ,∆1) | QH/2 + ε ≥ QH1 ≥
QH/2,∆/2+ε ≥ ∆1 ≥ ∆/2}\{(QH/2,∆/2)} for some ε > 0 such that the gradient of π(QH1 ,∆1)

is positive for all x ∈ X. Hence QH∗1 = QH/2, ∆∗1 = ∆/2 cannot be a solution.

A.6 Proof of Proposition 4

Proof. We first analyze the program

max
{Qi(ci),Ti(ci)}i=1,2;ci∈{0,c}

2∑
i=1

rTi(0) + (1− r)Ti(c) such that (A.9)

min{πi(ci, 0, ci), πi(ci, c, ci)} ≥ 0 (LL)

U [Li(ci | ci)] ≥ U [Li(cj | ci)] for cj 6= ci (IC)

Q ≥ Qi(ci) ≥ 0. (QQ)
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Following exactly the same arguments as in the proof of lemma 1, we can show that ∆i ≥ 0 is

necessary and sufficient for incentive compatibility, and that one can ignore the IC constraint

for the high-cost firm. ∆i ≥ 0 also implies one only needs to consider the LL constraints

corresponding to meeting an efficient competitor. Clearly then it is optimal to choose

Ti(c) = QHi [P (QH + ∆j)− c].

These observations allow us to re-write program (A.9) as

max
{Qi(ci),Ti(ci)}i=1,2;ci∈{0,c}

2∑
i=1

rTi(0) + (1− r)Ti(c) such that (A.10)

QHi [P (QH + ∆j)− c]− Ti(c) = 0 (A.11)

(QHi + ∆i)P (QH + ∆)− Ti(0) ≥ 0 (A.12)

r(QHi + ∆i)P (QH + ∆) + (1− r)(QHi + ∆i)P (QH + ∆i)− Ti(0) ≥

rQHi P (QH + ∆j) + (1− r)QHi P (QH)− Ti(c) (A.13)

∆i ≥ 0, QHi ≥ 0. (A.14)

where (A.11) is the binding limited-liability constraint for the high-cost firm corresponding

to meeting an efficient competitor; (A.12) is the limited-liability constraint for the low-cost

firm; (A.13) is the incentive-compatibility constraint for the low-cost firm; and (A.14) are non-

negativity constraints. Our strategy for solving this problem is to ignore (A.12) and (A.14),

and to solve the resulting relaxed program. Clearly in this relaxed program the IC constraint

for the low-cost firm will be binding since otherwise the upstream firm could increase profit by

increasing Ti(0). So we can write the simplified program as

max
{Qi(ci),Ti(ci)}i=1,2;ci∈{0,c}

2∑
i=1

rTi(0) + (1− r)Ti(c) such that (A.15)

QHi [P (QH + ∆j)− c]− Ti(c) = 0 (A.16)

r(QHi + ∆i)P (QH + ∆) + (1− r)(QHi + ∆i)P (QH + ∆i)− Ti(0) =

rQHi P (QH + ∆j) + (1− r)QHi P (QH)− Ti(c) (A.17)

The strategy for the rest of the proof is to derive conditions under which exclusive contracts

solve (A.15). These contracts also solve (A.10) if they satisfy the limited-liability constraint

for the low-cost firm (we will show below they satisfy the non-negativity constraints). We now

argue that exclusive contracts indeed do so. Clearly this is the case for the low-cost firm that

produces nothing. For the firm that produces in equilibrium, first note that the transfer for the

high-cost firm is given by Ti(c) = QH [P (QH) − c]. When we plug this expression into the IC
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constraint for the low-cost firm, we obtain

Ti(0) = (QH + ∆)[rP (QH + ∆) + (1− r)P (QH + ∆)]−QHP (QH) +QHP (QH)− cQH =

(QH + ∆)P (QH + ∆)− cQH

which is less than (QH + ∆)P (QH + ∆) since QH ≥ 0. Hence exclusive contracts that solve

(A.15) satisfy low-cost limited liability, and so are also solutions to (A.10).

We proceed with the solution to program (A.15). The upstream objective from plugging

Ti(c) and Ti(0) into the objective function is

r2
(
QH + ∆

)
P
(
QH + ∆

)
− r(1− r)QHP

(
QH
)
− cQH+

r(1− r)
[(
QH1 + ∆1

)
P
(
QH + ∆1

)
+
(
QH2 + ∆2

)
P
(
QH + ∆2

)]
+

(1− r2)[QH1 P
(
QH + ∆2

)
+QH2 P

(
QH + ∆1

)
].

Without loss of generality, let ∆1 ≥ ∆2, in which case QH1 = QH is optimal (the solution is

unique when ∆1 > ∆2). The upstream objective function can thus be written as

π(QH ,∆,∆2) = r2R
(
QH + ∆

)
− r(1− r)R

(
QH
)
− cQH+

r(1− r)
[
R
(
QH + ∆−∆2

)
+R

(
QH + ∆2

)]
+ (1− r)QHP

(
QH + ∆2

)
where R(Q) ≡ QP (Q) is revenue. The solutions we study below will all satisfy ∆/2 ≥ ∆2. The

partial derivatives of π(QH ,∆,∆2) are

∂π(QH ,∆,∆2)

∂QH
=


r2MR

(
QH + ∆

)
− r(1− r)MR

(
QH
)

+

r(1− r)
[
MR

(
QH + ∆−∆2

)
+ MR

(
QH + ∆2

)]
+

(1− r)
[
P
(
QH + ∆2

)
+QHP ′

(
QH + ∆2

)]
− c (A.18)

∂π(QH ,∆,∆2)

∂∆
= r2MR

(
QH + ∆

)
+ r(1− r)MR

(
QH + ∆−∆2

)
(A.19)

∂π(QH ,∆,∆2)

∂∆2
=

{
r(1− r)

[
−MR

(
QH + ∆−∆2

)
+ MR

(
QH + ∆2

)]
+

(1− r)QHP ′
(
QH + ∆2

) }
. (A.20)

Solution I: QH = 0, ∆2 = ∆
2 . This solution exists only if there is some ∆ > 0 such that

the partial derivatives evaluated at (QH ,∆,∆2) = (0,∆,∆/2) satisfy ∂π(QH ,∆,∆2)
∂QH < 0, and

∂π(QH ,∆,∆2)
∂∆ = ∂π(QH ,∆,∆2)

∂∆2
= 0. (A.20) is clearly satisfied, while (A.18) and (A.19) rewrite as18

−r(1− r)MR (0) + r(1− r)MR

(
∆

2

)
+ (1− r)P

(
∆

2

)
< c. (A.21)

rMR (∆) + (1− r)MR

(
∆

2

)
= 0 (A.22)

This solution cannot exist for r sufficiently small since MR
(

∆
2

)
= 0 and P

(
∆
2

)
< c cannot hold

18Here we have also plugged (A.18) into (A.19).
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simultaneously by assumption.

Solution II: QH > 0, 0 < ∆2 ≤ ∆
2 . This solutions exists only if the partial derivatives are all

0. The resulting system of equations simplifies to{
−r(1− r)MR

(
QH
)

+ r(1− r)MR
(
QH + ∆2

)
+

(1− r)
[
P
(
QH + ∆2

)
+QHP ′

(
QH + ∆2

)] }
= c (A.23)

rMR
(
QH + ∆

)
+ (1− r)MR

(
QH + ∆−∆2

)
= 0 (A.24)

r(1− r)
[
−MR

(
QH + ∆−∆2

)
+ MR

(
QH + ∆2

)]
+ (1− r)QHP ′

(
QH + ∆2

)
= 0. (A.25)

Since P ′ < 0, (A.25) implies that MR
(
QH + ∆2

)
> MR

(
QH + ∆−∆2

)
which in turn implies

∆2 < ∆ − ∆2 and ∆2 <
∆
2 . As r approaches 0, the left hand side of (A.25) must be strictly

negative. So this solution cannot exist for r sufficiently small.

Solution III: Exclusive contract with QH > 0, ∆ > 0, ∆2 = 0. This solution exists only if

rMR
(
QH + ∆

)
+ (1− r)MR

(
QH
)

= c (A.26)

rMR
(
QH + ∆

)
= 0 (A.27)

r(1− r)
[
−MR

(
QH + ∆

)
+ MR

(
QH
)]

+ (1− r)QHP ′
(
QH
)
< 0. (A.28)

which simplifies to

(1− r)MR
(
QH
)

= c (A.29)

MR
(
QH + ∆

)
= 0 (A.30)

rMR
(
QH
)

+QHP ′
(
QH
)
< 0. (A.31)

This solution clearly exists when r is small.

Note that we have not considered a solution in which ∆ = 0. To rule this out, one can

follow the exact same logic as in the proof of proposition 1.

A.7 Proof of Proposition 5

Proof. Following the same steps as in Lemma 1, we can without loss of generality ignore the

high-cost incentive compatibility constraint and replace the maximization problem in (11) with

one in which ∆i ≥ 0 and the incentive compatibility constraint of the low-cost firm is satisfied.

We begin with the case of risk neutrality. The ex-ante utility for firm i is

r
[(
QHi + ∆i

) {
[r + (1− r)ρ]P

(
QH + ∆

)
+ (1− r)(1− ρ)P

(
QH + ∆i

)}
− Ti(0)

]
+

(1− r)
[
QHi

{
r(1− ρ)P

(
QH + ∆j

)
+ [(1− r) + rρ]P

(
QH
)
− c
}
− Ti(c)

]
= 0 (A.32)
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from which we get

2∑
i=1

rTi(0) + (1− r)Ti(c) =

r[r + (1− r)ρ]
(
QH + ∆

)
P
(
QH + ∆

)
+ (1− r)[(1− r) + rρ]QHP

(
QH
)
− (1− r)cQH+

r(1− r)(1− ρ)
[(
QH + ∆1

)
P
(
QH + ∆1

)
+
(
QH + ∆−∆1

)
P
(
QH + ∆−∆1

)]
.

One can implement any interim allocation with ∆i ≥ 0 using transfers satisfying

Ti(0)− Ti(c) =
(
QHi + ∆i

) {
[r + (1− r)ρ]P

(
QH + ∆

)
+ (1− r)(1− ρ)P

(
QH + ∆i

)}
−

QHi
{

[r + (1− r)ρ]P
(
QH + ∆j

)
+ (1− r)(1− ρ)P

(
QH
)}

and (A.32). Showing the optimal values of ∆1 and ∆2 can be done using arguments nearly

identical to those in the proof of proposition 1.

We now turn to the case of infinite risk aversion. The first step is to argue which outcome

must be worst ex ante for the firm. Since incentive compatibility requires ∆i ≥ 0, meeting a

high cost firm can never be strictly better than meeting a low cost firm. The payoff from meeting

a low cost firm when low cost is
(
QH + ∆i

)
P
(
QH + ∆

)
− Ti(0) and from meeting a low cost

firm when high cost is QHP
(
QH + ∆j

)
− cQH − Ti(c). Now, interim incentive compatibility

requires that

(
QH + ∆i

)
P
(
QH + ∆

)
− Ti(0) ≥ QHP

(
QH + ∆j

)
− Ti(c) > QHP

(
QH + ∆j

)
− cQH − Ti(c).

So incentive compatibility implies drawing the high cost and meeting a low cost is the worst

possible outcome ex ante. Thus the ex ante participation constraint is

Ti(c) = QHi P
[
QH + ∆j

]
− cQHi (A.33)

which gives the optimal value of Ti(c). The constraint on Ti(0) is thus incentive compatibility,

yielding

Ti(0) =
(
QHi + ∆i

)
P
[
QH + ∆

]
− cQHi . (A.34)

Plugging into the upstream objective function gives

r
[(
QH1 + ∆1

)
P
(
QH + ∆

)
+
(
QH2 + ∆2

)
P
(
QH + ∆

)]
− cQH+

(1− r)
[
QH1 P

(
QH + ∆2

)
+QH2 P

(
QH + ∆1

)]
= r

(
QH + ∆

)
P
(
QH + ∆

)
− cQH+

(1− r)
[
QH1 P

(
QH + ∆2

)
+QH2 P

(
QH + ∆1

)]
. (A.35)

This is precisely the objective function analyzed in the case of infinite risk aversion in Section

3.1 (see expression 9).
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A.8 Proof of Proposition 6

Proof. We begin by deriving the optimal outputs under limited liability when the upstream

firm offers the optimal exclusive contract to a single firm. From the proof of proposition 4, the

equations that define the optimal QH and ∆ in an exclusive contract are MR(QH∗+∆∗) = 0 and

(1− r)MR(QH∗) = c. With linear demand, MR(Q) = 1−2Q. Solving gives QH∗ = 1−c
2 −

r
1−r

c
2

and ∆∗ = c
2(1−r) . By definition QLL(c) = QH∗ and QLL(0) = QH∗ + ∆∗.

To derive the optimal outputs with revenue sharing, we first elaborate on the claim in the

main text that we can express the optimal transfers as Ti(c) = Ti(0) = −cQi(c). First note that

we can drop the participation constraint of the low-cost firm since

−Ti(0) ≥ −Ti(c) ≥ −cQi(c)− Ti(c) ≥ 0,

where the first inequality comes from the low-cost IC constraint and the final inequality comes

from the high-cost PC constraint. As in the proof of lemma 1, consider the relaxed program

with only the high-cost PC and low-cost IC constraints:

−cQi(c)− Ti(c) ≥ 0 (A.36)

−Ti(0) ≥ −Ti(c) (A.37)

Clearly in an optimal contract both these are binding, since otherwise the upstream firm could

increase transfers and thus profit. From the high-cost PC constraint we obtain Ti(c) = −cQi(c),
and from the low-cost IC constraint we obtain Ti(0) = Ti(c). Moreover, the ignored IC constraint

for the high-cost firm writes as

c[Qi(0)−Qi(c)] ≥ Ti(c)− Ti(0).

The right-hand side of this expression is zero in the optimal contract in the relaxed program,

and so the solution to the relaxed program is also the solution to the full program whenever

Qi(0) ≥ Qi(c), which is true in the solution as shown below.

After plugging Ti(c) = Ti(0) = −cQi(c) into (12), we obtain exactly expression (6). As

argued in section 2.2, we can restrict attention to ∆1 = ∆2 = ∆
2 , and solve for the optimal QH

and ∆. The respective first order conditions are

r2MR(QH∗ + ∆∗) + 2r(1− r)MR(QH∗ + ∆∗/2) + (1− r)2MR(QH∗) = c (A.38)

r2MR(QH∗ + ∆∗) + r(1− r)MR(QH∗ + ∆∗/2) = 0 (A.39)

which rewrite with linear demand as 1− 2QH∗ − 2r∆∗ = c and r[1− 2QH∗]− (r2 + r)∆∗ = 0.

This system has solution

QH∗ =
1− c− r − rc

2(1− r)
, ∆∗ =

c

1− r
.

By definition QRS(c) = QH∗/2 and QRS(0) = (QH∗ + ∆∗)/2.
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We need to assume that the parameters are such that the upstream firm wishes to contract a

positive QH∗. The condition that satisfies expressions (A.29)-(A.31) in the proof of proposition

4 in the case of linear demand is r < 1−c
1+2c , while the condition that guarantees that QRS(c) > 0

is r < 1−c
1+c . So we assume that r < 1−c

1+2c in the computations below, which can be guaranteed

for any r ∈ (0, 1) for small enough c.

If we let Q be aggregate output, then upstream profit is E[Q ]−E[Q ]2 − V [Q ]− cE[Q ].

Moreover, as shown in the text in section 2.2, V [Q ] = r(1−r)
∑

i ∆2
i . The variance of aggregate

output with the optimal exclusive contract minus the optimal revenue sharing contract is

r(1− r)
[

1

2
− 1− c

2
+

r

1− r
c

2

]2

− 2r(1− r)
[

1

4
+
c

4
− 1− c

4
+

r

1− r
c

2

]2

=

−r(1− r)
[(

r

1− r
+ 1

)
c

2

]2

= − r

1− r
c2

4
.

The difference in expected production costs is

c

(
1− c

2
− r

1− r
c

2

)
− 2c

(
1− c

4
− r

1− r
c

2

)
=

c

(
1− c

2
− r

1− r
c

2

)
− c

(
1− c

2
− r

1− r
c

)
=

r

1− r
c2

2
.

So overall the upstream firm is better off by r
1−r

c2

4 with revenue sharing.

Expected downstream profits are given by rcE[Q ]. So the difference between exclusion and

revenue sharing is

rc

(
1− c

2
− r

1− r
c

2

)
− 2cr

(
1− c

4
− r

1− r
c

2

)
=

rc

(
1− c

2
− r

1− r
c

2

)
− rc

(
1− c

2
− r

1− r
c

)
=

r

1− r
rc2

2
.

Expected consumer surplus is
E[Q2 ]

2 = E[Q ]2+V [Q ]
2 . So the difference between exclusion

and revenue sharing is

1

2

[
r(1− r)

[
1

2
− 1− c

2
+

r

1− r
c

2

]2

− 2r(1− r)
[

1

4
+
c

4
− 1− c

4
+

r

1− r
c

2

]2
]

= − r

1− r
c2

8

The welfare comparisons are straightforward given these expressions.

A.9 Proof of Proposition 7

Proof. We know that the optimal exclusionary solution can be implemented if ICLH and ICLL

are satisfied. First, consider ICLH . It can be rewritten as P (QH∗) − P
(
2QH∗ + ∆∗

)
≥ c.

The LHS is always strictly positive because of decreasing demand. (Note that QH∗ and ∆∗ in
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general depend on c, but as c→ 0, QH∗ will always be strictly positive whereas limc→0 ∆∗ = 0.

This follows immediately by inspection of the FOCs implicitly defining QH∗ and ∆∗.) Define

inf
[
P (QH∗)− P

(
2QH∗ + ∆∗

)]
as the lowest value that the LHS can attain, and set c1 =

inf
[
P (QH∗)− P

(
2QH∗ + ∆∗

)]
. For any c ≤ c1, the ICLH is satisfied.

Next, consider ICLL. It can be rewritten as
[
P (QH∗ + ∆∗)− P

(
2QH∗ + 2∆∗

)]
(QH∗ +

∆∗)/QH∗ ≥ c. Since (QH∗ + ∆∗)/QH∗ ≥ 1, if
[
P (QH∗ + ∆∗)− P

(
2QH∗ + 2∆∗

)]
≥ c, the

ICLL will be satisfied. The LHS of the last inequality is always strictly positive because of

decreasing demand. Define inf
[
P (QH∗ + ∆∗)− P

(
2QH∗ + 2∆∗

)]
as the lowest value that the

LHS can attain, and set c2 = inf
[
P (QH∗ + ∆∗)− P

(
2QH∗ + 2∆∗

)]
. For any c ≤ c2, the ICLL

is satisfied.

Define c = min {c1, c2}. If c ≤ c, both ICs are satisfied: the principal is able to implement

the exclusionary solution, with only one firm selling in equilibrium, by making use of uniform

contracts.
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